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three-center Rh-H-B bridge. The Rh-H distances of 1.77 (6) 
and 1.78 (6) A compare well with those in other M-H-B 
bridges such as the Co-H distance of 1.82 (7) A found in 
[(C2H5)4N]jCo[(C2BioHio)2]2l15 and the Cr-H distance of 
1.78 (6) A found in [(CHj)4N][CCO)4CrB3H8].

16 A Rh-H 
distance of 2.1 A has been reported for the Rh-H-B bridge in 
[(PPhJ)2Rh(CB1OH10C-C6H5)].

17 The Rh-Rh distance of 
2.763 (1) A is well within the range reported for Rh-Rh single 
bonds (cf. Rh'-Rh1 = 2.68 A in [{-n5 - C5Hs)2Rh2(CO)3],18 

RhHi-Rh"' = 2.906 (1) A in [(M-H)(M-C1)!7?
5-C5(CH3)5]-

RhClI2]).'
9 

The transformation of a terminal B-H bond in I into a 
Rh-H-B bridge in II may represent an intermediate step in 
the oxidative addition of terminal B-H bonds to Rh. A similar 
situation is seen in the molecular structure of [Rh(PPh3)3]-
(ClO4),

20 in which the metal atom appears to interact with the 
C-H bond of a phenyl ring (Rh-H = 2.56 A). The two ter­
minal B-H bonds involved in the Rh-H-B interactions de­
termine a specific stereoisomer and of the four possibilities only 
II is observed21 with both d and / enantiomers present in the 
unit cell. 

Homogeneous olefin hydrogenation experiments were 
performed to determine the catalytic activity of II.22 In typical 
experiments it was found that II is an active hydrogenation 
catalyst exhibiting rates comparable with those of I, per rho­
dium center.23 Further studies concerning the mechanism3 of 
homogeneous hydrogenation of olefins using I and II as cata­
lysts are presently underway in these laboratories. 
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Synthesis and Crystal Structure Analysis 
of a Rhodiacyclopentenedione Complex Containing 
a Coordinated Water Ligand 

Sir: 

Recently there has been considerable synthetic and struc­
tural interest in metallocyclic complexes. Several synthetic 
routes have been used to obtain these complexes, the existence 
and characterization of which is key to many proposed 
mechanisms in catalysis-related reactions. These routes include 
coupling of acetylenes,' reactions of a,w-dilithio-substituted 
hydrocarbons,2 and metal-promoted cleavage of the C—C 
bonds in strained cyclic hydrocarbons.3 We have been inves­
tigating the latter method in our laboratory using square-
planar d8 complexes of Rh(I) and Ir(I) together with the un­
saturated cyclic hydrocarbons C3Ph3

+ and C3Cl4. Previous 
work on the C3Ph3

+ aromatic cation has led to the facile 
preparation of l,2,3-triphenylpropenylium-l,3-diyl complexes 
of Ir(III)3b and Rh(III).3c In this communication we report 
some preliminary synthetic and structural results on com­
pounds formed from reactions of C3Cl4.

4 

Under anhydrous conditions in methylene chloride or ben­
zene, Rh(CO)Cl(PMe2Ph)2 and C3Cl4 react to give a mixture 
of two noncrystalline Rh(III) products which are believed to 
be the simple cationic oxidative addition adduct I and the 
corresponding neutral carbon monoxide insertion product II 
(cf. C3Ph3

+ chemistry). Complex I is a red powder with ^c=O 

Cl 
OC C 

Rh • >C - Cl 

Cl 

Cl C ^ 
\ ' s - . 

Rh ' > 
C 1 ^ P > 

. ,C l 

• C^ r 

at 2085 cm-1, while II is a yellow powder with ^c=O at 1670 
cm - ' . This reaction proceeds instantaneously and in high yield, 
but the two compounds are hygroscopic and difficult to sepa­
rate and obtain analytically pure. Various solvents and reaction 
conditions were employed in an effort either to obtain crys-
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Scheme I 

Figure 1. Perspective view of the RhCI(H2O)(PIvIe2Ph)2(C4O2Ci2) 
molecule showing the molecular geometry and some important bond dis­
tances. Standard deviations in the bond distances are 0.002 A for Rh-P 
and Rh-Cl, 0.006 A for Rh-C and Rh-O, and 0.01 A for C-C and 
C-O. 
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talline products directly or to obtain one adduct preferentially 
over the other, but attempts thus far have failed. It was dis­
covered during the course of these experiments that, when 
methanol was used as the solvent, a yellow crystalline product 
III could be isolated upon workup. This compound differed 
spectroscopically from II in two ways: viz., the carbonyl 
stretching frequency (KBr) broadened and shifted from 1670 
cm -1 in II to 1635 cm"1 in III and bands at 3550 and 3350 
cm"' attributable to a coordinated aquo or hydroxo ligand 
were found. Spectroscopic and analytical data5 were insuffi­
cient to assign the structure conclusively; so a full single-crystal 
X-ray diffraction study was performed. 

The results of the X-ray study,6 shown in Figure 1, dem­
onstrate that III is an octahedral Rh(III) complex of formu­
lation RhCl(H2O)(PMe2Ph)2(C4O2Cl2) which possesses a 
metallocyclic 3,4-dichlororhodiacyclopent-3-ene-2,5-dione 
ring7 and a coordinated aquo ligand. A mixed isotropic-an­
isotropic refinement model was used applying rigid body 
constraints to the phenyl groups and idealized coordinates for 
the methyl hydrogens. The two hydrogen atoms of the coor­
dinated water molecules were located and included in the final 
stages of the least-squares refinement. Some selected bond 
distances are shown in Figure 1. All of these are in close 
agreement with values reported for related complexes except 
the Rh-Cl (2.50 A) and the R h - O H 2 (2.28 A) bonds which 
are both noted to be especially long as a consequence of the 
strong trans influence exerted by the organic group.3c,8~10 The 
Rh(C4O2Cl2) fragment is planar to within 0.10 A and the 
C—C, C=C, and C=O bond distances1' indicate a localized 
bonding network. The Rh—C bonds which both measure 1.97 
(1) A are in the range of 1.96-2.00 A3c'8-'0'13 normally ob­
served for Rh(III)—C(sp2) bonds. On the basis of these 
crystallographically observed Rh—C distances, the extent to 
which electrons are delocalized onto the metal center is ques­
tionable; however, it is necessary to postulate some degree of 
electron derealization in order to account for the abnormally 

low value of 1635 cm"1 for the acyl carbonyl stretching mode7b 

in the electronically more sensitive infrared data. 
Since methanolysis of I and II did not yield a rhodiacyclo-

pentenedione complex of type III, neither I nor II can be an 
intermediate in the methanol reaction and a different pathway 
is suggested. We believe that III is formed via a metal-pro­
moted cleavage of the C—C bond of an in situ generated 
methoxycyclopropene, IV. The mechanism of this reaction can 
be accommodated by Scheme I. 

Fortuitously we were able to isolate the intermediate VI in 
a pure crystalline form5 by treating Rh(CO)Cl(PMe2Ph)2 with 
CsCl4 in a small amount of CH3OH (2 mL) at lower temper­
atures (0 0C). This reaction goes instantaneously and VI 
precipitates out as a microcrystalline yellow-orange solid in 
~50% yield. Attempts to increase this yield are hampered by 
its subsequent decomposition into VII. The infrared spectrum 
of VI shows, in addition to the C=O stretching mode at 1660 
cm-1, a sharp band at 1350 cm -1, assignable to the C— 
O—CH3 stretching mode.14 Intermediate VI is unstable in 
solution (CH2Cl2, CHCl3), the band at 1350 cm"1 disappears, 
and VII can be isolated from the decomposed solution. Con­
version of VI to VII with concurrent loss of CH3CI can be 
demonstrated by NMR. In addition to the resonances ac­
counting for the presence of the trans phosphines, the NMR 
spectrum of VI in CDCl3 shows a single sharp resonance at 8 
5.3 assignable to the -OCH3 group of the metallocycle and a 
weak resonance at 8 3.0 (CH3Cl). During a period of ap­
proximately 30 min, the peak at 8 5.3 disappears while the one 
at 8 3.0 increases in intensity. 

Complex VII can be directly obtained by carrying out the 
reaction in rigorously dried methanol. It is a yellow solid whose 
infrared.is identical with that of III except that the water 
modes are absent. The coordinated water ligand is picked up 
during the course of the recrystallization.8 It was initially 
thought that dichlorocyclopropenone, which is known to be 
formed by hydrolysis of tetrachlorocyclopropene,15 was the 
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species which reacts with Rh(I). The preceeding mechanistic 
discussion clearly eliminates this possibility. Furthermore 
Tobey and West16 have shown that alcoholysis of C3CI4 does 
not lead to dichlorocyclopropenone but rather to a mixture of 
acrylic acid esters via ring opening of an unstable cyclopropane 
intermediate which could not lead to a product of the type 
isolated. 

On the basis of this proposed mechanism, synthetic studies 
are currently in progress to prepare metallocyclobutenes 
similar to intermediate V and to demonstrate the subsequent 
insertion step. It is interesting to note that, since IV can add 
to the Rh(I) complex in two ways to produce V as well as its 
geometric isomer, one may a priori expect a mixture of two 
products resulting from CO cis migration33 into two different 
Rh—C bonds. In our studies no evidence for the isomeric 
2,3-dione has been found, although platinum complexes of this 
type have been prepared by a different route.17 
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The Importance of Intramolecular Hydrogen Bonding 
on the Reactivity of Tetrahydro Diol Epoxides 

Sir: 

The chemistry of the tetrahydro diol epoxides (TDE) of 
polycyclic aromatic hydrocarbons is presently of much concern. 
This is due to the fact that these compounds have been pro­
posed to be the ultimate carcinogenic and mutagenic deriva­
tives of the ubiquitous benzo[a]pyrene' as well as benz[a]-
anthracene.2 Both syn- and anti-TDE isomers are produced 
in the metabolism of benzo[o]pyrene through the combined 
action of cytochrome P-450 and epoxide hydrase.3 Many 
workers4 have suggested that intramolecular hydrogen bonding 
between epoxide oxygen and hydroxyl group in the syn isomers 
provides assistance to ring opening. The anti isomer, in its most 
stable conformation, possesses no such structural feature. The 

OR OR 

""o N o 
R = - H (DE-I) R = -H(DE-2) 
R =-CH 3 (DME-I) R = -CH3 (DME-2) 

relevant syn and anti structures for the compounds of this study 
are abbreviated as DE-I and DE-2, respectively. Herein the 
chemistry5 of DE-I and DE-2 is compared with that of their 
dimethyl ethers (i.e., DEM-I and DEM-2) to delineate the 
relative importance of conformation as opposed to internal 
hydrogen bonding in determining the rates for epoxide ring 
opening. The NMR coupling constant of Hj and H2 of both 
DE-I and DME-I is at ~ 3 Hz, in accord with their diequato-
rial conformation, so that the trans-hydroxyl and trans-
methoxyl groups must be diaxial. The J value for both DE-2 
and DME-2 is ~ 9 , implying a conformation in which the 
trans-hydroxyl and 7ra«5-methoxyl groups are diequatorial. 
These results dictate that the conformation of DE-1 is that of 
DME-I and that of DE-2 is the same as DME-2 under the 
solvent conditions used in these NMR studies.5 

In the present study we have determined the acid (&H) and 
spontaneous or water-catalyzed {ko) rate constants for sol-
volysis of DE-1, DE-2, DME-1, and DME-2 and the second-
order rate constants for nucleophilic attack of /3-mercapto-
ethanol anion (ks) upon the various substrates as a function 
of the composition of dioxane-water mixed solvent. We would 
expect the effect of any intramolecular hydrogen bonding to 
be accelerated upon decrease in the protic nature of the solvent. 
Values of /CH and ko (Table I) were obtained from plots of the 
logarithm of the first-order rate constants (/c0bsd) of solvolysis 
vs. the pH values at which the /c0bsd values were determined. 
Examination of Table I reveals that in water the k\\ values for 
both DE-1 and DME-I are less than those for both DE-2 and 
DME-2, while exactly the reverse is true for the ko constants. 
Conformation, therefore, rather than internal hydrogen 
bonding, appears to be the feature of importance in deter­
mining both the spontaneous and acid-catalyzed solvolysis rate 
constants in water. (The observation that ^o for DE-I is twice 
that for DME-I might be interpreted as a small contribution 
of 0.4 kcal M - 1 to AG* due to hydrogen bonding.) Transfer 
from water to 75% dioxane-water (v/v) has little effect on the 
ratio of A;H values for syn- and anti-hydroxyl compounds, while 
the value of ku for the .syn-methoxyl compound is actually 
enhanced over that for its anti isomer (Tables I and II).6 '7 

Again, however, there is no apparent influence of the syn-
hydroxyl group of DE-I upon rate. Jerina and co-workers,8 

working with the bay region syn and anti diol epoxides of 
benzo[a]pyrene (BP-I and BP-2, respectively), have suggested 
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